Chapter 8: Test of Statistical Hypotheses

8.4 The Wilcoxon Signed Rank Test

Normality assumption, is it always met? Answer is _____

In those cases **nonparametric** (distribution-free methods), should be considered.

Sign Test

Let X be a continuous-type random variable and let m denote the median of X. Also let $X_1, X_2, ..., X_n$ denote the observations of a random sample from this distribution.

1. Write the Null and Alternative Hypothesis

2. Find the test statistic

3. Find the p-value

4. Make the decision

Example 1. Let X denote the length of time in seconds between two calls entering a call center. Let m be the unique median of this continuous-type distribution. Test whether the median is less than 6.2. Observations are,

The Wilcoxon Signed Rank Test (Wilcoxon Test)

Assumptions:

- _

- _
- 1. Write the Null and Alternative Hypothesis
- 2. Find the test statistic

- 3. Find the p-value
- 4. Make the decision

(a) Technical:

(b) English:

Example 2. Suppose the lengths of n = 10 sunfish are

we would like to test if the population median is greater than 3.7. Perform a Wilcoxon signed rank test.

4

Example 3. Let m be the median of a symmetric distribution of the continuous type. Test whether the m is more than 160. Observations are,

$x_i:$	176.9	158.3	152.1	158.8	172.4	169.8	159.7	162.7	156.6	174.5	184.4	165.2	147.8	177.8	160.1	160.5
--------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------

Two medians with paired data

Example 4. We consider some paired data for percentage of body fat measured at the beginning and the end of a semester. Let m equal the median of the differences, x - y.

Use the Wilcoxon statistic to test the hypothesis that the median of the differences (m) is positive.

The differences are listed below: