
Chapter 6: Point Estimation

6.4 Maximum Likelihood Estimation

Recall:

– The sample mean can be thought of as an estimate of the distribution mean

– The sample variance can be used as an estimate of the distribution variance

In this section we are going to address the following questions:

1. How good are these estimates?
2. What makes an estimate good?
3. Can we say anything about the closeness of an estimate to an unknown parameter?

Here we consider random variables for which the functional form of the pmf or pdf is known, but the
distribution depends on an unknown parameter (say, θ) that may have any value in a set (say, Ω) called the

.

Example 1.

Note 1. – Estimator of θ: Statistic u(X1, X2, . . . , Xn) where X1, X2, . . . , Xn are random variables.

– Estimate of θ: u(x1, x2, . . . , xn) where x1, x2, . . . , xn are observations.

Example 2. 1. Suppose that X is b(1, p), so that the pmf of X is:

2. We note that , where represents the parameter space. That is, the space of all
possible values of the parameter p.

3. Given a random sample X1, X2, . . . , Xn, the problem is to find an estimator u(X1, X2, . . . , Xn) such that
u(x1, x2, . . . , xn) is a good point estimate of p, where x1, x2, . . . , xn are the observed values of the random
sample.

4. Now, the probability that X1, X2, . . . , Xn takes these particular values is:

5. One reasonable way to proceed toward finding a good estimate of p is to regard this probability (or joint
pmf ) as a function of p and find the value of p that maximizes it.

6. The joint pmf, when regarded as a function of p, is frequently called the function.
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7. Thus, here the likelihood function is:

8. To find the estimator that maximizes the likelihood function, first take ln of the likelihood function and
then take the derivative and set it equal to zero to find the critical values.
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Example 3. Suppose X1, X2, . . . , Xn is a random sample from the exponential distribution. Find the maxi-
mum likelihood estimator of θ
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Example 4. Suppose X1, X2, . . . , Xn is a random sample from the geometric distribution. Find the maximum
likelihood estimator of p

Example 5. Suppose X1, X2, . . . , Xn is a random sample from the N(µ, σ2). Find the maximum likelihood
estimators of µ and σ.
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Definition 1. If E[u(X1, X2, ..., Xn)] = θ, then the statistic u(X1, X2, ..., Xn) is called an unbiased esti-
mator of θ. Otherwise, it is said to be biased.

Example 6. Suppose X1, X2, . . . , Xn is a random sample from the N(µ, σ2).

1. Show that X̄ is an unbiased estimator of µ
2. Show that s2 is an unbiased estimator of σ2

Method of Moments Estimators: The method of moments involves equating sample moments with
theoretical moments. So, let’s start by making sure we recall the definitions of theoretical moments, as well
as learn the definitions of sample moments.

1. Equate the first sample moment about the origin M1 = 1
n

∑n
i=1Xi = X̄ to the first theoretical moment

E(X).
2. Equate the second sample moment about the origin M2 = 1

n

∑n
i=1X

2
i to the first theoretical moment

E(X2).
3. Continue equating sample moments about the origin, Mk, with the corresponding theoretical moments
E(Xk), k = 3, 4, ... until you have as many equations as you have parameters.

4. Solve for the parameters.

Example 7. Suppose X1, X2, . . . , Xn is a random sample of size n with the pdf f(x; θ) = θxθ−1, 0 < x < 1,
0 < θ <∞. Use the method of moments to find a point estimate for θ
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Example 8. Let the distribution of X be N(µ, σ2). Use the method of moments to find a point estimates for
µ and σ2


