(1.2)
(1.5 Give reason for your answer)
(1.12)
A regression model is \(y = \beta_0 + \beta_1x + \epsilon\). There are six observations. The summary statistics are:
\[\sum y_i = 8.5,\quad \sum x_i = 6,\quad \sum x_i^2 = 16,\quad \sum x_iy_i = 15.5,\quad \sum y_i^2 = 17.25\] Calculate the LS estimate of \(\beta_1\)
\[\sum y_i = 252,\quad \sum x_i = 216,\quad \sum x_i^2 = 3092,\quad \sum x_iy_i = 3364,\quad \sum y_i^2 = 4528\] Calculate the LS estimate of \(\beta_1\)
x | 2 | 5 | 8 | 11 | 13 | 15 | 16 | 18 | |
---|---|---|---|---|---|---|---|---|---|
y | -10 | -9 | -4 | 0 | 4 | 5 | 6 | 8 |
Calculate the LS estimate of \(\beta_1\) using \(R\)
\[\sum y_i = 1742,\quad \sum x_i = 144,\quad \sum x_i^2 = 2300,\quad \sum x_iy_i = 26696,\quad \sum y_i^2 = 312674 \quad n = 12\] Determine the LS equation for the model \(y_i = \beta_0 + \beta_1x_i + \epsilon_i\).